4.3 Differentiation of Parametric Equations

Question Paper

Course	CIEALevelMaths
Section	4. Differentiation
Торіс	4.3 Differentiation of Parametric Equations
Difficulty	Hard

Time allowed:	60
Score:	/45
Percentage:	/100

Question la

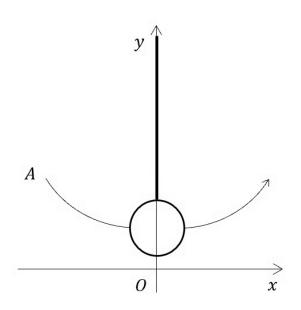
(a) Find an expression for $\frac{dy}{dx}$ in terms of *t* for the parametric equations

 $x = \sin 2t$ $y = e^t$

[3 marks]

Question 1b

(b) Verify that the graph of x against y passes through the point (0, 1) and find the gradient at that point.


[2 marks]

Question 2a

A crane swings a wrecking ball along a two-dimensional path defined by the parametric equations

$$x = 8t - 4 \qquad y = 16t^2 - 16t + 5 \qquad 0 \le t \le 1$$

as shown in the diagram below.

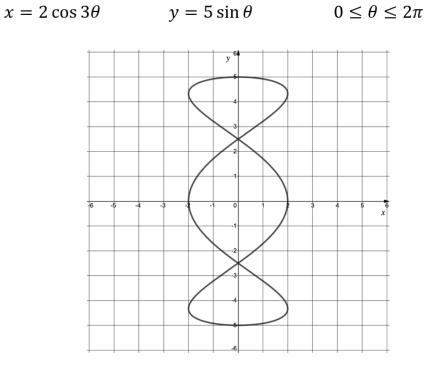
x and y are, respectively, the horizontal and vertical displacements in metres from the origin, O, and t is the time in seconds. Point A indicates the initial position of the wrecking ball, at time t = 0.

(a) Find a Cartesian equation of the curve in the form y = f(x), and state the domain of f(x).

Question 2b

(b) Find the difference between the maximum and minimum heights of the wrecking ball during its motion.

[2 marks]


Question 2c

(c) The crane is positioned such that point *A* is 7 m horizontally from the wall the wrecking ball is to destroy.

Find the height at which the wrecking ball will strike the wall.

Question 3a

The graph of the curve *C* shown below is defined by the parametric equations

(a) Find an expression for $\frac{dy}{dx}$ in terms of θ .

Question 3b

(b) (i) Show that the gradient of the tangent to *C*, at the point where $\theta = \frac{\pi}{4}$, is $-\frac{5}{6}$.

(ii) Hence find the equation of the tangent to *C* at the point where $\theta = \frac{\pi}{4}$.

[4 marks]

Question 4a

The curve C has parametric equations

$$x = \frac{1}{t^2} \qquad y = t + \frac{1}{t} \qquad t > 0$$

(a) Find an expression, in terms of t, for $\frac{dy}{dx}$.

Question 4b

(b) (i) Find the gradient of the tangent to *C* at the point where $t = \frac{1}{2}$.

(ii) Hence find the equation of the normal to *C* at the point where $t = \frac{1}{2}$.

[5 marks]

Question 5a

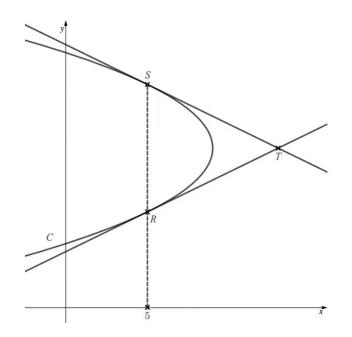
The curve C has parametric equations

$$x = t^2 - 4 \qquad \qquad y = 3t$$

(a) Show that at the point (0, 6), t = 2 and find the value of $\frac{dy}{dx}$ at this point.

[4 marks]

Question 5b


(b) The tangent at the point (0, 6) is parallel to the normal at the point *P*.Find the exact coordinates of point *P*

Question 6

A curve C has parametric equations

 $x = 9 - t^2 \qquad \qquad y = 5 - t$

The tangents to *C* at the points *R* and *S* meet at the point *T*, as shown in the diagram below.

Given that the *x*-coordinate of both points *R* and *S* is 5, find the area of the triangle RST.

[10 marks]